Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Non-isovalent substitution in a Zintl phase with the TiNiSi type structure, $\mathrm{CaMg}_{1-x} \mathrm{Ag}_{x} \mathrm{Ge}[x=0.13$ (3)]

Charles Banenzoué, ${ }^{\text {a }}$ Siméon Ponou ${ }^{\text {b }} \boldsymbol{} \ddagger$ and John Ngolui Lambic

${ }^{\text {a }}$ Departement de Chimie Inorganique, Université de Douala, Cameroon,
${ }^{\mathbf{b}}$ Department of Inorganic Chemistry, Arrhenius Laboratory, Stockholm University, SE 10691 Stockholm, Sweden, and ${ }^{\text {c }}$ Department of Chemistry, E.N.S. de Yaounde, BP 47 Yaounde, Cameroon
Correspondence e-mail: simeonp@inorg.su.se
Received 31 October 2009; accepted 15 November 2009
Key indicators: single-crystal X-ray study; $T=293 \mathrm{~K} ;$ mean $\sigma(\mathrm{Ge}-\mathrm{Mg})=0.0006 \AA$; disorder in main residue; R factor $=0.019 ; w R$ factor $=0.041$; data-to-parameter ratio $=24.6$.

Single crystals of the title Ag -substituted calcium magnesium germanide, $\mathrm{CaMg}_{1-x} \mathrm{Ag}_{x} \mathrm{Ge}[x=0.13$ (3)] were obtained from the reaction of the corresponding elements at high temperature. The compound crystallizes with the TiNiSi structure type (Pearson code $o P 12$) and represents an Ag -substituted derivative of the Zintl phase CaMgGe in which a small fraction of the divalent Mg atoms have been replaced by monovalent Ag atoms. All three atoms in the asymmetric unit ($\mathrm{Ca}, \mathrm{Mg} / \mathrm{Ag}, \mathrm{Ge}$) occupy special positions with the same site symmetry (.m.). Although the end member CaAgGe has been reported in an isomorphic superstructure of the same TiNiSi type, higher Ag content in solid solutions could not be achieved due to competitive formation of other, perhaps more stable, phases.

Related literature

For the KHg_{2} structure type, see: Duwell \& Baenziger (1955) and for the TiNiSi structure type, see: Shoemaker \& Shoemaker (1965); Eisenmann et al. (1972); Villars \& Calvert (1991). For the structural systematics and properties of the TiNiSi structure type, see: Kauzlarich (1996); Landrum et al. (1998). For related compounds, see: Ponou \& Lidin (2008); Ponou et al. (2007). For atomic radii, see: Pauling (1960).

[^0]
supplementary materials

Acta Cryst. (2009). E65, i90 [doi:10.1107/S1600536809048454]

Non-isovalent substitution in a Zintl phase with the TiNiSi type structure, $\mathbf{C a M g}_{1-x} \mathbf{A g}_{x} \mathbf{G e}[x=$ 0.13 (3)]

C. Banenzoué, S. Ponou and J. N. Lambi

Comment

The solid solution $\mathrm{CaMg}_{1-x} \mathrm{Ag}_{x} \mathrm{Ge}[x=0.13$ (3)] is iso-structural with the non-substituted ternary phase CaMgGe (Eisenmann et al., 1972). It crystallizes in the TiNiSi type (Space Group Pnma) with $\mathrm{Ca}, \mathrm{Mg} / \mathrm{Ag}$, and Ge at Ti , Ni , and Si -positions, respectively. The TiNiSi type (Shoemaker \& Shoemaker, 1965) which is well represented among ternary equiatomic phases (Villars \& Calvert, 1991), is an ordered ternary derivative of the KHg_{2} type (Duwell \& Baenziger, 1955; Pearson code oI12). Hence, the structure consist of a three-dimensional four-connected anionic $\left[\mathrm{Mg}_{1-x} \mathrm{Ag}_{x} \mathrm{Ge}\right]$ networks with the Ca cations sitting in large channels (Fig. 1). The anionic network may be constructed from two-dimensional sheets, similar to those in black phosphorus and running perpendicular to the a-axis, which are linked along the a-direction to form one-dimensional ladders of edge-sharing four-rings and channels of eight-rings running along the b-direction. The TiNiSi type is known to be very versatile and shows remarkable structural and electronic flexibility (Landrum et al., 1998). Meanwhile, a large number of compounds with the TiNiSi type like CaMgGe can be rationalized as Zintl phases (Kauzlarich, 1996) according to the ionic formulation $\mathrm{Ca}^{2+}\left(\mathrm{Mg}^{2+} \mathrm{Ge}^{4}\right)$. Zinlt phases are known to be very sensitive to the electron count (Ponou et al., 2007). But, because of the above mentioned flexibility of the TiNiSi type, non-isovalent substitutions was expected without major structural distortion. Thus, since CaAgGe crystallizes in the isomorphic (i_{3}) superstructure of the TiNiSi type with a tripling of the a-axis (Ponou \& Lidin, 2008), a wide stoichiometry breadth was expected in the system $\mathrm{CaMg}_{1-x} \mathrm{Ag}_{x} \mathrm{Ge}$. Eventually, the reaction of different starting mixtures with $x=1 / 4,1 / 2$, and $3 / 4$, yielded almost the same composition $(x=0.10-0.13)$ within 3σ standard deviation. This indicates a narrow homogeneity range, meaning that in this class of materials, the inherent electronic rigidity of the Zintl phase may be conflicting with the otherwise remarkable flexibility of TiNiSi type.
$\mathrm{CaMg}_{0.87}{ }_{(1)} \mathrm{Ag}_{0.13}{ }_{(1)} \mathrm{Ge}$ is the Ag -richest phase that was structurally characterized. The unit-cell volume here $(\mathrm{V}=$ $\left.280.99(1) \AA^{3}\right)$ is quite similar to that of the non-substituted phase $\mathrm{CaMgGe}\left(\mathrm{V}=280.89 \AA^{3}\right)$, though the size of Mg is significantly larger than [Pauling's (1960) radii: Mg $1.600 \AA, \mathrm{Ag} 1.440 \AA$]. But, it should be noted that the later cell parameters were determined with much higher standard deviation (Eisenmann et al., 1972). In a reinvestigation of the CaMgGe structure (not reported), no indications of any superstructure were found.

Experimental

Three different mixtures of the elements (all from ABCR GmbH, Karlsruhe, Germany) Ca (granule, 99.5%), Mg (pieces, 99.9%), Ag (60 m powder, 99.9%), and $\mathrm{Ge}\left(50 m\right.$ powder, 99.999%), with compositions along the $\mathrm{CaMg}_{1-\mathrm{x}} \mathrm{Ag}_{x} \mathrm{Ge}$ series with $x=1 / 4,1 / 2$, and 0.75 were loaded in a Niobium ampoules (approx. 9 mm diameter and 30 mm length) which were sealed on both ends by arc-melting and, in turn, enclosed in evacuated fused silica Schlenk tube to protect the former from air oxidation at high temperature. The ampoules were heated at 1273 K for 2 h , and cooled at a rate of $6 \mathrm{~K} / \mathrm{h}$ to 923 K , where they are annealed for 24 h , then cooled down to room temperature by turning off the furnace. Semi quantitative EDX

supplementary materials

analysis of the single crystals confirmed the presenced of the four elements, and no eventual contaminant at the detection limit could be observed.

Refinement

The refinement was straightforward, the full occupancies for all sites were verified by freeing the site occupation factor for an individual atom, while keeping that of the other atoms fixed. This proved that all positions but one, the Mg site, were fully occupied. The refined occupancy at Mg assigned position was higher than 100%, indicating a mixing with heavier element. Therefore, this position (labelled $\mathrm{Mg} / \mathrm{Ag}$) was modelled as a statistical mixture of Mg and Ag , and refined as 86.9 (1)\% Mg and 13.1 (1)\% Ag.

Figures

Fig. 1. : A perspective view of (I) with displacement ellipsoids drawn at 95% probability level. $\mathrm{Ca}, \mathrm{Mg} / \mathrm{Ag}$, and Ge atoms are drawn as grey crossed, orange and blue spheres, respectively.

calcium magnesium silver germanide

Crystal data

$\mathrm{CaMg}_{0.87} \mathrm{Ag}_{0.13} \mathrm{Ge}$
$M_{r}=147.84$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=7.5128(2) \AA$
$b=4.45730(10) \AA$
$c=8.3911(2) \AA$
$V=280.991(12) \AA^{3}$
$Z=4$

Data collection

Oxford Xcalibur3
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Monochromator: graphite
Detector resolution: 16.5467 pixels mm^{-1}
$T=293 \mathrm{~K}$
ω scans
Absorption correction: multi-scan
(CrysAlis RED; Oxford Diffraction, 2007)
$T_{\text {min }}=0.396, T_{\max }=0.584$
2462 measured reflections
$F_{000}=273.5$
$D_{\mathrm{x}}=3.495 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 2462 reflections
$\theta=4.9-32.1^{\circ}$
$\mu=13.43 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Irregular block, grey
$0.10 \times 0.06 \times 0.04 \mathrm{~mm}$

516 independent reflections
481 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=32.1^{\circ}$
$\theta_{\min }=4.6^{\circ}$
$h=-8 \rightarrow 10$
$k=-5 \rightarrow 6$
$l=-12 \rightarrow 12$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.019$
$w R\left(F^{2}\right)=0.041$
$S=1.10$
516 reflections

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0233 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.89 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.44 \mathrm{e} \AA^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97 (Sheldrick, 2008),
$\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$
Extinction coefficient: 0.084 (3)
21 parameters

Special details

Experimental. CrysAlis RED, (Oxford Diffraction, 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
Ge 1	$0.76875(4)$	0.2500	$0.38457(3)$	$0.00994(12)$	
Ag 1	$0.14396(8)$	0.2500	$0.43738(7)$	$0.0140(2)$	$0.1309(15)$
Mg 1	$0.14396(8)$	0.2500	$0.43738(7)$	$0.0140(2)$	$0.8691(15)$
Ca 1	$0.51982(7)$	0.2500	$0.68206(7)$	$0.01280(14)$	

Atomic displacement parameters (A^{2})

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ge 1	$0.00976(16)$	$0.00827(16)$	$0.01178(17)$	0.000	$-0.00007(9)$	0.000
Ag 1	$0.0172(4)$	$0.0124(3)$	$0.0124(3)$	0.000	$-0.0020(2)$	0.000
Mg 1	$0.0172(4)$	$0.0124(3)$	$0.0124(3)$	0.000	$-0.0020(2)$	0.000
Ca 1	$0.0119(3)$	$0.0134(3)$	$0.0131(3)$	0.000	$-0.00085(18)$	0.000

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{Ge} 1 — \mathrm{Mg} 1^{\mathrm{i}}$	$2.7621(4)$	$\mathrm{Ag} 1 — \mathrm{Ag} 1^{\mathrm{viii}}$
$\mathrm{Ge} 1 — \mathrm{Ag} 1^{\mathrm{i}}$	$2.7621(4)$	$\mathrm{Ag} 1 — \mathrm{Mg} 1^{\mathrm{ix}}$

Ge1-Mg11 ${ }^{\text {ii }}$	
$\mathrm{Ge} 1 — \mathrm{Ag} 1^{\mathrm{ii}}$	
	Ge1—Ag1 ${ }^{\text {iii }}$
	Ge1-Mg1 ${ }^{\text {iii }}$
	Gel-Mg1 ${ }^{\text {iv }}$
	Ge1-Ag1 ${ }^{\text {iv }}$
Ge 1 - Ca 1	
$\mathrm{Ge} 1-\mathrm{Ca} 1^{\text {ii }}$	
$\mathrm{Ge}-\mathrm{Ca1}{ }^{\text {i }}$	
$\mathrm{Ge} 1-\mathrm{Ca} 1^{\text {v }}$	
Ag1-Ge1 ${ }^{\text {i }}$	
Ag1-Ge1 ${ }^{\text {ii }}$	
Ag1-Ge1 ${ }^{\text {vi }}$	
Ag1-Ge1 ${ }^{\text {vii }}$	
Ag1-Mg1 ${ }^{\text {viii }}$	
$\mathrm{Mg} 1^{\mathrm{i}}-\mathrm{Ge} 1-\mathrm{Ag} 1^{\text {i }}$	
$\mathrm{Mg} 1^{1}-\mathrm{Ge} 1-\mathrm{Mg} 1^{11}$	
	Ag1 ${ }^{\text {i }}-\mathrm{Ge} 1-\mathrm{Mg} 1^{\text {ii }}$
$\mathrm{Mg} 1^{\mathrm{i}}-\mathrm{Ge} 1-\mathrm{Ag} 1^{\text {ii }}$	
Agl ${ }^{\text {i }}-\mathrm{Ge} 1-\mathrm{Ag} 1^{\text {ii }}$	
	$\mathrm{Mg} 1^{\mathrm{ii}}-\mathrm{Ge} 1-\mathrm{Ag} 1^{\text {ii }}$
$\mathrm{Mg} 1^{\mathrm{i}}$ - Gel — $\mathrm{Ag} 1^{\text {iii }}$	
Ag1 ${ }^{\text {i }}$ - Gel —Ag1 ${ }^{\text {iii }}$	
$\mathrm{Mg} 1{ }^{\text {ii }}-\mathrm{Ge} 1-\mathrm{Ag} 1^{\text {iii }}$	
Ag1 $1^{\text {ii }}-\mathrm{Ge} 1-\mathrm{Ag} 1{ }^{\text {iii }}$	
$\mathrm{Mg} 1^{\mathrm{i}}-\mathrm{Ge} 1-\mathrm{Mg} 1^{\text {iii }}$	
Ag1 ${ }^{\text {i }}$ - $\mathrm{Ge} 1-\mathrm{Mg} 1{ }^{\text {iii }}$	
$\mathrm{Mg} 1^{\text {ii }}-\mathrm{Gel}-\mathrm{Mg} 1^{\text {iii }}$	
Ag1 ${ }^{\text {ii }}-\mathrm{Ge} 1-\mathrm{Mg} 1{ }^{\text {iii }}$	
Ag1 ${ }^{\text {iii }}-\mathrm{Ge} 1-\mathrm{Mg} 1^{\text {iii }}$	
$\mathrm{Mg} 1^{\mathrm{i}}-\mathrm{Ge} 1-\mathrm{Mg} 1^{\text {iv }}$	
Ag1 ${ }^{\text {i }}-\mathrm{Ge} 1-\mathrm{Mg} 1^{\text {iv }}$	
$\mathrm{Mg} 1{ }^{\text {ii }}-\mathrm{Ge} 1-\mathrm{Mg1}{ }^{\text {iv }}$	
Ag1 ${ }^{\text {ii }}-\mathrm{Ge} 1-\mathrm{Mg} 1^{\text {iv }}$	
Ag $\mathrm{i}^{\text {iii }}-\mathrm{Ge} 1-\mathrm{Mg} 1^{\text {iv }}$	
$\mathrm{Mg} 1{ }^{\text {iii }}-\mathrm{Ge} 1-\mathrm{Mg} 1^{\text {iv }}$	
$\mathrm{Mg} 1^{\mathrm{i}}-\mathrm{Ge} 1-\mathrm{Ag} 1^{\mathrm{iv}}$	
Ag1 ${ }^{\text {i }}-\mathrm{Ge} 1-\mathrm{Ag} 1^{\text {iv }}$	
	$\mathrm{Mg} 1{ }^{\text {iii }}-\mathrm{Ge} 1-\mathrm{Ag} 1^{\text {iv }}$
	Ag1 ${ }^{\text {ii }}-\mathrm{Ge} 1-\mathrm{Ag} 1{ }^{\text {iv }}$

2.7621 (4)
2.7621 (4)
2.8535 (7)
2.8535 (7)
2.8596 (7)
2.8596 (7)
3.1191 (6)
3.1590 (4)
3.1590 (4)
3.2214 (4)
2.7621 (4)
2.7621 (4)
2.8535 (7)
2.8596 (7)
3.2788 (9)
0.00 (2)
107.58 (2)
107.58 (2)
107.58 (2)
107.58 (2)
0.0
71.425 (16)
71.425 (16)
71.425 (16)
71.425 (16)
71.425 (16)
71.425 (16)
71.425 (16)
71.425 (16)
0.00 (2)
126.076 (12)
126.076 (12)
126.075 (12)
126.075 (12)
118.073 (19)
118.073 (19)
126.076 (12)
126.076 (12)
126.075 (12)
126.075 (12)

$\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {ix }}$	3.2788 (9)
$\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{x}}$	3.3267 (8)
$\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{xi}}$	3.3273 (6)
Ag1-Ca1 ${ }^{\text {xii }}$	3.3273 (6)
Ag1-Ca1	3.4912 (8)
$\mathrm{Ca} 1-\mathrm{Ge} 1^{\text {ii }}$	3.1590 (4)
$\mathrm{Ca} 1-\mathrm{Gel}^{1}$	3.1590 (4)
$\mathrm{Ca} 1-\mathrm{Ge} 1^{\text {xiii }}$	3.2214 (4)
$\mathrm{Ca} 1-\mathrm{Ge} 1^{\text {xiv }}$	3.2214 (4)
$\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xv}}$	3.3267 (8)
Ca 1 - $\mathrm{Ag} 1^{\mathrm{xv}}$	3.3267 (8)
$\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xvi}}$	3.3273 (6)
Ca1-Ag1 ${ }^{\text {xvi }}$	3.3273 (6)
$\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xvii}}$	3.3273 (6)
Ca1-Ag1 ${ }^{\text {xvii }}$	3.3273 (6)
$\mathrm{Ge} 1^{\mathrm{i}}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{x}}$	63.086 (14)
$\mathrm{Ge} 1^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{Ca}^{\text {x }}$	63.086 (14)
$\mathrm{Ge} 1^{\mathrm{vi}}$ - $\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{x}}$	82.653 (19)
$\mathrm{Ge} 1^{\mathrm{vii}}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{x}}$	177.14 (3)
$\mathrm{Mg} 1^{\text {viii }}-\mathrm{Ag} 1-\mathrm{Ca}^{\text {x }}$	60.49 (2)
$\mathrm{Ag} 1^{\text {viii }} \mathrm{Ag} 1-\mathrm{Ca}^{\text {x }}$	60.49 (2)
$\mathrm{Mg} 1^{\mathrm{ix}}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{x}}$	60.49 (2)
$\mathrm{Ag} 1^{\mathrm{ix}}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{x}}$	60.49 (2)
$\mathrm{Ge} 1^{\mathrm{i}}$ —Ag1- $\mathrm{Ca}^{\text {xi }}$	167.565 (19)
$\mathrm{Ge} 1^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{Ca} 1{ }^{\mathrm{xi}}$	84.010 (9)
$\mathrm{Ge} 1^{\mathrm{vi}}$ - $\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{xi}}$	62.269 (13)
Ge1 ${ }^{\text {vii }}$ - $\mathrm{Ag} 1-\mathrm{Ca}^{\text {xi }}$	60.851 (14)
$\mathrm{Mg} 1^{\text {viii }}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\text {xi }}$	60.470 (16)
$\mathrm{Ag} 1^{\text {viii }}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{xi}}$	60.470 (16)
$\mathrm{Mg} 1^{\mathrm{ix}}-\mathrm{Ag} 1-\mathrm{Ca}^{\text {xi }}$	114.69 (3)
$\mathrm{Ag} 1^{\mathrm{ix}}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{xi}}$	114.69 (3)
$\mathrm{Ca} 1^{\mathrm{x}}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{xi}}$	120.958 (16)
Ge1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Ca} 1^{\text {xii }}$	84.010 (9)
$\mathrm{Ge} 1^{\text {ii }}-\mathrm{Ag} 1-\mathrm{Ca} 1{ }^{\text {xii }}$	167.565 (19)
$\mathrm{Ge1}{ }^{\text {vi }}$ - $\mathrm{Ag} 1-\mathrm{Ca1} 1^{\text {xii }}$	62.269 (13)
Ge1 ${ }^{\text {vii }}$ - $\mathrm{Ag} 1-\mathrm{Ca} 1{ }^{\text {xii }}$	60.851 (14)
$\mathrm{Mg} 1^{\text {viii }}$ - $\mathrm{Ag} 1-\mathrm{Ca} 1{ }^{\text {xii }}$	114.69 (3)
Ag1 $1^{\text {viii }}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\text {xii }}$	114.69 (3)
$\mathrm{Mg} 1^{\text {ix }}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\mathrm{xii}}$	60.470 (16)
$\mathrm{Ag} 1^{\text {ix }}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\text {xii }}$	60.470 (16)

sup-4

-
Ag1 ${ }^{\text {iii }}$ - $\mathrm{Ge} 1-\mathrm{Ca} 1^{\mathrm{ii}}$
-
-
$\mathrm{Ca} 1-\mathrm{Ge} 1-\mathrm{Ca} 1^{\text {ii }}$
-Gel-
Ag1 ${ }^{\text {iii }}$ - $\mathrm{Ge} 1-$
Ag1 ${ }^{\text {iiii }}-\mathrm{Ge} 1-\mathrm{Ca} 1^{\text {i }}$
Ag1 ${ }^{\text {iv }}-\mathrm{Gel}$
Ca1-Gel-Ca
1^{1}
$\mathrm{Mg} 1^{\mathrm{i}}-\mathrm{Ge} 1-\mathrm{Cal}^{\mathrm{v}}$
$\mathrm{Ag} 1^{\mathrm{i}}-\mathrm{Ge} 1-\mathrm{Ca1}{ }^{\mathrm{v}}$
$\mathrm{Mg}-\mathrm{Gel}-\mathrm{Ca}$
$\mathrm{Ag} 1{ }^{\mathrm{ii}}-\mathrm{Ge} 1-\mathrm{Ca} 1^{\mathrm{v}}$
$\mathrm{Ag} 1{ }^{\text {iii }}-\mathrm{Ge} 1-\mathrm{Ca} 1^{\text {v }}$
$\mathrm{Mg} 1{ }^{\text {iii }}-\mathrm{Ge} 1-\mathrm{Ca}$
$\mathrm{Mg} 1^{\text {iv }}-\mathrm{Ge} 1-\mathrm{Ca}$
$\mathrm{Ag} 1^{\text {iv }}-\mathrm{Ge} 1-\mathrm{Ca} 1^{\text {v }}$
$\mathrm{Ca} 1-\mathrm{Ge} 1-\mathrm{Ca1}{ }^{\text {v }}$
ii $-\mathrm{Ge} 1-\mathrm{Ca1}{ }^{\text {v }}$

118.073 (19)
118.073 (19)
0.00 (2)
73.110 (14)
73.110 (14)
73.110 (14)
73.110 (14)
117.905 (19)
117.905 (19)
124.022 (18)
124.022 (18)
145.884 (18)
145.884 (18)
71.906 (14)
71.906 (14)
134.864 (8)
134.864 (8)
66.910 (14)
66.910 (14)
74.345 (14)
71.906 (14)
71.906 (14)
145.884 (18)
145.884 (18)
134.864 (8)
134.864 (8)
66.910 (14)
66.910 (14)
74.345 (14)
89.738 (15)
136.591 (17)
136.591 (17)
67.048 (15)
67.048 (15)
66.097 (13)
66.097 (13)
70.325 (14)
70.325 (14)
135.874 (8)
75.935 (6)
137.148 (11)

$\mathrm{Ca} 1^{\mathrm{x}}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\text {xii }}$	120.958 (16)
$\mathrm{Ca} 1{ }^{\mathrm{xi}}-\mathrm{Ag} 1-\mathrm{Ca} 1^{\text {xii }}$	84.104 (19)
$\mathrm{Ge} 1^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Ca} 1$	59.328 (12)
$\mathrm{Ge} 1^{\mathrm{ii}}-\mathrm{Ag} 1-\mathrm{Ca} 1$	59.328 (12)
Ge1 ${ }^{\text {vi }}$-Ag1-Cal	152.91 (2)
Ge1 ${ }^{\text {vii }}$-Ag1-Ca1	106.88 (2)
$\mathrm{Mg} 1{ }^{\text {viii }}-\mathrm{Ag} 1-\mathrm{Ca} 1$	110.19 (2)
$\mathrm{Ag} 11^{\text {viii }}$ - $\mathrm{Ag} 1-\mathrm{Ca} 1$	110.19 (2)
$\mathrm{Mg} 1^{\text {ix }}-\mathrm{Ag} 1-\mathrm{Ca} 1$	110.19 (2)
$\mathrm{Ag} 1^{\mathrm{ix}}-\mathrm{Ag} 1-\mathrm{Ca} 1$	110.19 (2)
$\mathrm{Ca} 1^{\mathrm{x}}-\mathrm{Ag} 1-\mathrm{Ca} 1$	70.261 (14)
$\mathrm{Ca} 1^{\mathrm{xi}}-\mathrm{Ag} 1-\mathrm{Ca} 1$	132.669 (11)
$\mathrm{Ca} 1{ }^{\text {xii }}-\mathrm{Ag} 1-\mathrm{Ca} 1$	132.669 (11)
$\mathrm{Ge} 1-\mathrm{Ca} 1-\mathrm{Ge}^{\text {ii }}$	105.655 (14)
$\mathrm{Ge} 1-\mathrm{Ca} 1-\mathrm{Ge} 1^{\text {i }}$	105.655 (14)
$\mathrm{Ge} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{Ge} 1^{\mathrm{i}}$	89.738 (15)
$\mathrm{Ge} 1-\mathrm{Ca} 1-\mathrm{Ge}^{\text {xiii }}$	97.268 (13)
$\mathrm{Ge} 1^{\text {ii }}-\mathrm{Ca} 1-\mathrm{Ge} 1^{\text {xiii }}$	156.90 (2)
$\mathrm{Ge} 1^{\mathrm{i}}$ - $\mathrm{Ca} 1-\mathrm{Ge} 1^{\text {xiii }}$	86.771 (6)
$\mathrm{Ge} 1-\mathrm{Ca} 1-\mathrm{Ge}^{\text {xiv }}$	97.268 (13)
$\mathrm{Ge} 1^{\text {iii }}-\mathrm{Ca} 1-\mathrm{Ge} 1^{\text {xiv }}$	86.771 (6)
Ge1 ${ }^{\text {i }}$ - $\mathrm{Ca} 1-\mathrm{Ge} 1^{\text {xiv }}$	156.90 (2)
$\mathrm{Ge} 1^{\text {xiii }}-\mathrm{Ca} 1-\mathrm{Ge} 1^{\text {xiv }}$	87.548 (14)
$\mathrm{Ge}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xv}}$	126.88 (2)
$\mathrm{Ge} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{Mg}^{\text {xv }}$	111.240 (16)
$\mathrm{Ge} 1^{\mathrm{i}}$ - $\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xv}}$	111.240 (16)
$\mathrm{Ge} 1^{\text {xiii }}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xv}}$	49.866 (10)
$\mathrm{Ge} 1^{\text {xiv }}-\mathrm{Ca} 1-\mathrm{Mg}^{\mathrm{xv}}$	49.866 (10)
$\mathrm{Ge} 1-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xv}}$	126.88 (2)
$\mathrm{Ge} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xv}}$	111.240 (16)
$\mathrm{Ge} 1^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xv}}$	111.240 (16)
$\mathrm{Ge} 1^{\mathrm{xiii}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xv}}$	49.866 (10)
$\mathrm{Ge} 1^{\mathrm{xiv}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xv}}$	49.866 (10)
$\mathrm{Mg} 1^{\mathrm{xv}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xv}}$	0.000 (6)
Ge1-Ca1-Mg1 ${ }^{\text {xvi }}$	137.481 (10)
$\mathrm{Ge} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{Mg}^{1}{ }^{\text {xvi }}$	109.433 (18)
Gel ${ }^{\text {i }}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\text {xvi }}$	52.239 (12)
$\mathrm{Ge} 1^{\text {xiii }}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xvi}}$	51.633 (12)
$\mathrm{Ge} 1^{\text {xiv }}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xvi}}$	107.823 (18)
$\mathrm{Mg} 1^{\mathrm{xv}}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xvi}}$	59.042 (16)
$\mathrm{Ag} 1^{\mathrm{xv}}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xvi}}$	59.042 (16)

Ge1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Ge} 1^{\mathrm{ii}}$	107.58 (2)	Ge1—Ca1—Ag1 ${ }^{\text {xvi }}$	137.481 (10)
Ge1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Ge}^{\text {vi }}$	108.575 (16)	$\mathrm{Ge} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvi}}$	109.433 (18)
Ge1 ${ }^{\text {ii }}$ - $\mathrm{Ag} 1-\mathrm{Gel}^{\text {vi }}$	108.575 (16)	$\mathrm{Ge1}{ }^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvi}}$	52.239 (12)
Ge1 ${ }^{\text {i }}$-Ag1— $\mathrm{Ge}^{\text {vii }}$	115.669 (14)	$\mathrm{Ge} 1^{\mathrm{xiii}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvi}}$	51.633 (12)
Ge1 ${ }^{\text {ii }}-\mathrm{Ag} 1-\mathrm{Gel}^{\text {vii }}$	115.669 (14)	$\mathrm{Ge} 1^{\mathrm{xiv}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvi}}$	107.823 (18)
Ge1 ${ }^{\text {vi }}$-Ag1-Ge1 ${ }^{\text {vii }}$	100.20 (2)	$\mathrm{Mg} 1^{\mathrm{xv}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvi}}$	59.042 (16)
Ge1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Mg} 1^{\text {viii }}$	122.12 (3)	$\mathrm{Ag} 1^{\mathrm{xv}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvi}}$	59.042 (16)
Ge1 $1^{\text {ii }}$ - $\mathrm{Ag} 1-\mathrm{Mg} 1^{\text {viii }}$	55.586 (12)	$\mathrm{Mg} 1^{\mathrm{xvi}}$ - $\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvi}}$	0.00 (3)
Ge1 ${ }^{\text {vi }}-\mathrm{Ag} 1-\mathrm{Mg} 1^{\text {viii }}$	52.990 (18)	$\mathrm{Ge} 1-\mathrm{Ca} 1-\mathrm{Mg} 1^{\text {xvii }}$	137.481 (10)
Ge1 ${ }^{\text {vii }}$-Ag1—Mg1 $1^{\text {viii }}$	121.27 (2)	$\mathrm{Ge} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{Mg}^{1}{ }^{\text {xvii }}$	52.239 (12)
Ge1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1 — \mathrm{Ag} 1^{\text {viii }}$	122.12 (3)	$\mathrm{Ge} 1^{\mathrm{i}}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\text {xvii }}$	109.433 (18)
Ge1 ${ }^{\text {iii }}$-Ag1—Ag1 $1^{\text {viii }}$	55.586 (12)	$\mathrm{Ge} 1^{\text {xiii }}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\text {xvii }}$	107.823 (18)
Ge1 ${ }^{\text {vi }}$ - Ag 1 - $\mathrm{Ag} 1^{\text {viii }}$	52.990 (18)	$\mathrm{Ge} 1^{\text {xiv }}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\text {xvii }}$	51.633 (12)
Ge1 ${ }^{\text {vii }}$-Ag1—Ag1 $1^{\text {viii }}$	121.27 (2)	$\mathrm{Mg}^{1}{ }^{\mathrm{xv}}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xvii}}$	59.042 (16)
$\mathrm{Mg} 1^{\text {viii }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {viii }}$	0.000 (16)	$\mathrm{Ag} 1^{\mathrm{xv}}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xvii}}$	59.042 (16)
Ge1 ${ }^{\text {i }}-\mathrm{Ag} 1-\mathrm{Mg} 1^{\text {ix }}$	55.586 (12)	$\mathrm{Mg} 1^{\text {xvi }}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\text {xvii }}$	84.104 (19)
Ge1 ${ }^{\text {ii }}-\mathrm{Ag} 1-\mathrm{Mg} 1^{\text {ix }}$	122.12 (3)	$\mathrm{Ag} 1^{\mathrm{xvi}}-\mathrm{Ca} 1-\mathrm{Mg} 1^{\mathrm{xvii}}$	84.104 (19)
Ge1 ${ }^{\text {vi }}$ - $\mathrm{Ag} 1-\mathrm{Mg} 1^{\text {ix }}$	52.990 (18)	$\mathrm{Ge} 1-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvii}}$	137.481 (10)
Ge1 ${ }^{\text {vii }}$-Ag1-Mg1 ${ }^{\text {ix }}$	121.27 (2)	$\mathrm{Ge} 1^{\mathrm{ii}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvii}}$	52.239 (12)
$\mathrm{Mg} 1{ }^{\text {viii }}-\mathrm{Ag} 1-\mathrm{Mg} 1^{\text {ix }}$	85.64 (3)	$\mathrm{Ge} 1^{\mathrm{i}}$ - $\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvii}}$	109.433 (18)
Ag1 ${ }^{\text {viii }}-\mathrm{Ag} 1-\mathrm{Mg} 1^{\text {ix }}$	85.64 (3)	$\mathrm{Ge} 1^{\text {xiii- }} \mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvii}}$	107.823 (18)
Ge1 ${ }^{\text {i }}$ - $\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {ix }}$	55.586 (12)	$\mathrm{Ge}{ }^{\text {xiv }}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvii}}$	51.633 (12)
$\mathrm{Ge} 1{ }^{\text {ii }}$ - $\mathrm{Ag} 1 — \mathrm{Ag} 1{ }^{\text {ix }}$	122.12 (3)	$\mathrm{Mg} 1^{\mathrm{xv}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvii}}$	59.042 (16)
$\mathrm{Ge1}{ }^{\text {vi }}-\mathrm{Ag} 1$ - $\mathrm{Ag} 1{ }^{\text {ix }}$	52.990 (18)	$\mathrm{Ag} 1^{\mathrm{xv}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvii}}$	59.042 (16)
Ge1 ${ }^{\text {vii }}$ - $\mathrm{Ag} 1 — \mathrm{Ag} 1^{\text {ix }}$	121.27 (2)	$\mathrm{Mg} 1^{\mathrm{xvi}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvii}}$	84.104 (19)
$\mathrm{Mg} 1^{\text {viii }}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {ix }}$	85.64 (3)	$\mathrm{Ag} 1^{\mathrm{xvi}}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\mathrm{xvii}}$	84.104 (19)
$\mathrm{Ag} 1^{\text {viii }}-\mathrm{Ag} 1 — \mathrm{Ag} 1^{\mathrm{ix}}$	85.64 (3)	$\mathrm{Mg} 1^{\text {xvii }}-\mathrm{Ca} 1-\mathrm{Ag} 1^{\text {xvii }}$	0.00 (2)
$\mathrm{Mg} 1^{\text {ix }}-\mathrm{Ag} 1-\mathrm{Ag} 1^{\text {ix }}$	0.000 (16)		

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1,-y,-z+1$; (iii) $x+1, y, z$; (iv) $x+1 / 2, y,-z+1 / 2$; (v) $-x+3 / 2,-y, z-1 / 2$; (vi) $x-1, y, z$; (vii) $x-1 / 2, y,-z+1 / 2$; (viii) $-x,-y,-z+1$; (ix) $-x,-y+1,-z+1$; (x) $x-1 / 2, y,-z+3 / 2$; (xi) $-x+1 / 2,-y, z-1 / 2$; (xii) $-x+1 / 2,-y+1, z-1 / 2$; (xiii) $-x+3 / 2,-y+1, z+1 / 2$; (xiv) $-x+3 / 2,-y, z+1 / 2$; (xv) $x+1 / 2, y,-z+3 / 2$; (xvi) $-x+1 / 2,-y+1, z+1 / 2$; (xvii) $-x+1 / 2,-y, z+1 / 2$.

Fig. 1

[^0]: \ddagger Permanent address: Department of Chemistry, E.N.S. de Yaounde BP 47
 Yaounde Cameroon.

